
Assessment Data and Results for Alder Creek

This document includes the results and data collected from all of the protocols completed at Alder Creek. The first two pages are a map of Alder Creek, showing the locations of all assessments, by protocol and then showing the standardized rating. The third page is an overview table for all protocols including the assessment output, our standardized rating, and the factors identified that went into the rating. The following pages are the data sheets and/or summary results of each protocol.

\sim				
	or	nte	ent	ΕS
_				

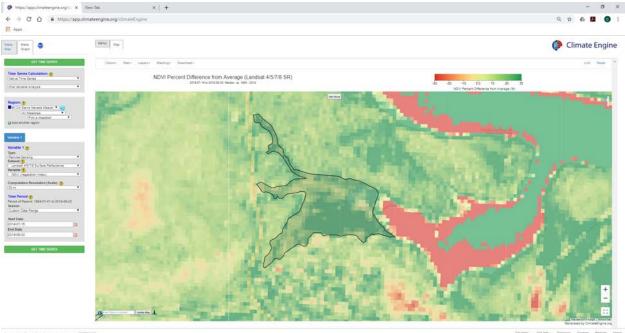
Map of Assessment Areas	2
Map of Assessment Ratings	3
Assessment Outputs and Ratings	4
Climate Engine	5
CRAM	9
GDE	12
Meadow Scorecard	21
MIM	
PFC Report	
PFC Lentic	
PFC Lotic	
Rooted Frequency	

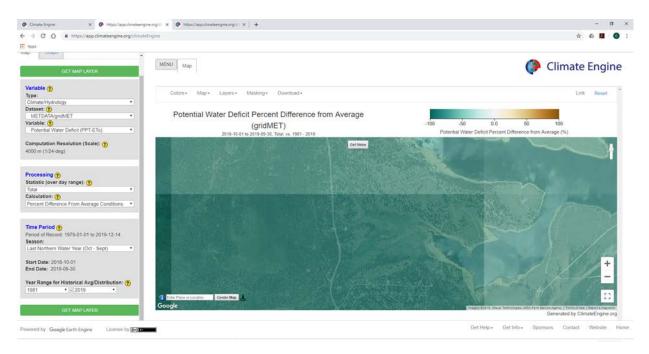
Assessment outputs at Alder Creek:

Protocol	Assessment Output	Standardized Rating	Factors Identified
Climate Engine	Downward trend and sensitivity to PWD	Fair	Drying, extensive downcutting, declining vegetative cover in small area
CRAM	84/100	Good	Incised channel, otherwise good condition
GDE	2 negative effects identified, no False Management Indicators	Good	Fen dewatering due to channelized flow
Meadow Scorecard	18/32 = 56%	Fair	Headcuts, channel incision, drying
МІМ	Greenline Ecological Status Rating = 92.7 (PNC); Winward Greenline Stability Rating = 7.73 (High)	Excellent	Robust stream channel with no signs of erosion, no streambank alteration
PFC Lentic	Functional at Risk, with 8 variables identified as non- functional	Fair	Incision, headcutting, drying of meadow at downstream end
PFC Lotic	Functional at Risk, with 8 variables identified as non- functional	Fair	Incision, headcutting, fluctuation of water levels, lack of stabilizing vegetation at downstream end
Rooted Frequency	Ecological status rating of 63	Good	43% competitor/decreaser species

Alder Creek Meadow(UCDSNM 014565), Climate Engine Assessment – <u>https://app.climateengine.org/</u> Assessed by: Christine Albano

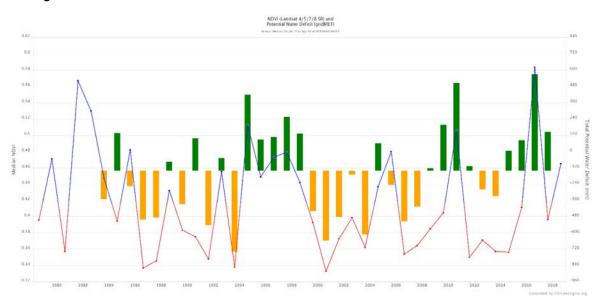
The data derived from Climate Engine provide a long-term (1985-present) perspective on how vegetation vigor, indicated by the Normalized Difference Vegetation Index (NDVI), has changed over time and in response to interannual variations in climate. We focus on late summer (July-Sept) NDVI because this is the time vegetation is most sensitive to water availability, with higher NDVI values indicating greater vegetation vigor and cover. We use the median NDVI value from this time period because Landsat satellite images are only available for approximately every 8-16 days (depending on the year) and can have clouds or shadow effects that obscure the vegetation signal. By taking the median value for the handful of images for the July-Sept time period, we minimize the chances of having a low-quality image. Annual maximum NDVI is also commonly used as an indicator of peak biomass production and may also provide useful information for an assessment. It tends to be highly correlated with late summer NDVI. As a general rule of thumb, NDVI values range from -1 to 1. Negative NDVI values indicate surface water bodies, positive NDVI values < 0.2 indicate areas dominated by bare soil, NDVI values >0.4 indicate high cover/vegetation vigor typical of wet meadows, and values in between 0.2 and 0.4 indicate a mix of bare ground and vegetation.

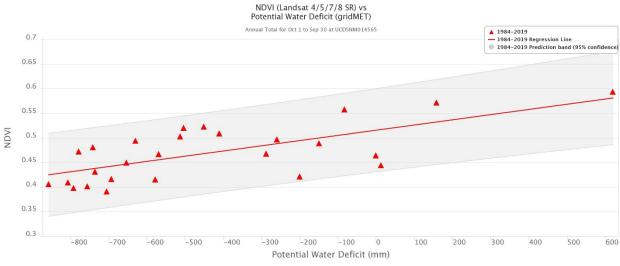

NDVI and climate data can be used in combination to understand 1) the status of vegetation relative to the historical record, 2) the sensitivity of vegetation to climate variability, and 3) trends in vegetation over time.


- 1) A status assessment compares NDVI in the year of interest relative to the historical record. Calculating the anomaly as the percent difference from average provides a useful and intuitive interpretation of the data. In a wet year, we would expect the NDVI anomaly to be positive (higher than average) and in a dry year, we would expect it to be negative (lower than average). When the anomaly differs from this expectation, it could indicate effects of disturbance or management influences. For example, if the anomaly is below average in a wet year, this could indicate degraded conditions relative to the historical record that merit additional field investigation. Because water has a very low NDVI value, it could also indicate the presence of surface water. If the anomaly is above average in a dry year, it suggests the meadow has higher water availability relative to the historical record, indicating positive effects of restoration or changes in management.
- 2) A climate sensitivity assessment identifies the slope of the relationship between NDVI and climate. Late-summer NDVI tends to be responsive to annual precipitation and evapotranspiration amounts, but the degree of sensitivity will vary depending on the amount of water subsidized to the meadow from ground or surface water. Drier meadows that are less connected to ground or surface water tend to be most sensitive to climate. In this assessment, we use annual water year (Oct-Sept) Potential Water Deficit, which equates to the difference between water year precipitation and potential evapotranspiration and tends to be more highly correlated with NDVI than precipitation or potential evapotranspiration, alone. Meadows with high climate sensitivity will exhibit highly variable vegetation cover/vigor from year to year and this should be taken into consideration when comparing field assessments among years.

3) A trend assessment is not yet possible in Climate Engine but is coming soon. The trend assessment uses the non-parametric Mann-Kendall test for monotonic trend to assess whether NDVI is increasing or decreasing over time. A decreasing trend indicates decreasing vegetation cover or vigor that may merit additional field investigation. It could also indicate increasing presence of water. An increasing trend indicates increasing vegetation cover/vigor due to increased connectivity with ground or surface water. It can also occur due to natural successional processes as vegetation grows in the absence of resource limitations. Increasing NDVI may also occur surrounding surface water bodies with declining water levels, as vegetation encroaches so does not always indicate increasing water availability.

Status Assessment:

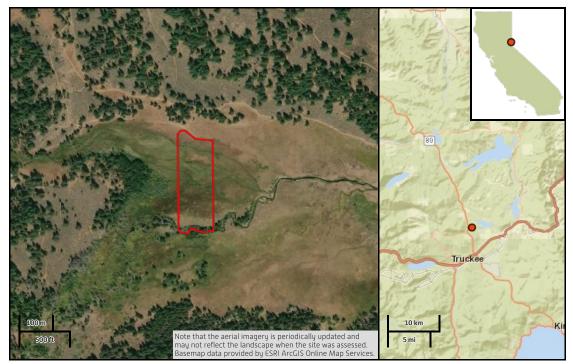

Relative to the historical (1984-2019 record), late summer (July 15-Sept 30) 2019 *NDVI is higher than average in most parts of the meadow, due to the above normal water year*. This is the expected relationship. The northern and western periphery of the meadow show smaller anomalies than the central/southern, potentially indicating differences in responses to climate within the meadow or potentially indicating places where drying is occurring over time (lower anomaly areas). Beaver activity was observed in the greener area, which may explain this result. Similarly, extensive downcutting was observed in the northern part of the meadow which may also be playing a role. The red area outside the meadow and along the periphery of the reservoir indicates water levels are higher than average (water has a very low NDVI value).



<u>Climate Sensitivity Assessment</u> (based on spatial averages of entire meadow polygon):

Over time, potential water deficit (PPT-PET) and NDVI tend to correspond well with each other. **No** apparent changes in their relationship over time that would indicate disturbance or changes due to management.

NDVI is somewhat sensitive to potential water deficit (PPT-PET), with NDVI values varying from about 0.42 to 0.59, on average, between the highest and lowest water defecit years. This suggests that water year climate is likely to influence conditions in this meadow and should be considered when making comparisons of ground assessments among years. Because this is a large meadow comprised of many different hydrogeomorphic surfaces, it is likely that drier parts of the meadow are driving this sensitivity moreso than areas with more consistently high water availability.


Generated by ClimateEngine.org

Trend Assessment (note that this capability is coming soon to Climate Engine but is not yet available):

1984-2018 trend in median July-Sept NDVI (red=declining NDVI, blue=increasing NDVI, no color= trend not significant): Much of the meadow exhibits no trend, but the a*rea around reach start generally is increasing in trend, same with inlet into Prosser Reservoir. Small area to north showing decreasing trend.* The increasing trend around the Reservoir inlet likely suggests overall declines in water levels surrounding the reservoir over time (soil/vegetation have higher NDVI than water), despite relatively high water levels in 2019 (shown in status assessment). Other areas of dark blue may indicate effects of beaver activity over time resulting in increased water retention. The small red patch indicates declining vegetation cover/condition. This area was investigated in the field and could be due to overall drying of the fen-like conditions that occur here. A small number of dead trees were also found here that may also explain this decline. The lack of trend in the rest of the meadow does not necessarily indicate static conditions, rather it indicates a lack of consistent upward or downward trending over the 1984-2019 time period that was analyzed. The area surrounding the meadow is generally trending upward, indicating increase vegetation cover/vigor, and increased forest water use that has the potential to affect water availability in the meadow.

Basic Information

eCRAM ID	7051
Assessment Area Name	Alder Creek Meadow
Project Name	
Assessment Area ID	
Project ID	
Wetland Type	channeled wet meadow
CRAM Version	6.1
Visit Date	2019-08-06
AA Category	
Practitioners	Sarah Pearce (lead practitioner), Clifford Harvey (other practitioner), Brendan Reed (other practitioner)
Other Practitioners	
County	Nevada
Ecoregion	sierra
AA Centroid Latitude	39.37556
AA Centroid Longitude	-120.17569

AA Size (Hectares)	1.90897
Surface Water Present?	Yes
Hydrology Description	Groundwater support, seeps, and surface water flow from the creek (although it is now incised and likely doesn't flood the meadow any longer)
Peat soils present?	Yes
AA Encompasses	portion of the wetland
Hydrologic State	ponded/inundated
Apparent Hydrologic Regime	seasonal
Comments	This is part of the USFS Meadow Comparison, lead by Shana Gross and Jen Greenberg. This assessment overlapped with the collection of data by many other methodologies.

Metric Scores

Attribute	Buffer And Landscape Context	100.00
	Aquatic Area Abundance	A (12)
	Percent Of AA With Buffer	A (12)
	Average Buffer Width	A (12)
	Buffer Condition	A (12)
Attribute	Hydrology	75.00
	Water Source	B (9)
	Hydroperiod	A (12)
	Hydrologic Connectivity	
	Bank Height Ratio	D (3)
	Percent Dewatered	B (9)
Attribute	Physical Structure	87.50
	Structural Patch Richness	A (12)
	Topographic Complexity	B (9)
Attribute	Biotic Structure	72.92
	Number Of Plant Layers Present	C (6)
	Number Of Co-Dominant Species	B (9)
	Percent Invasion	B (9)
	Number Of Upland Encroachment Groups	B (9)
	Plant Community Score	8
	Horizontal Interspersion And Zonation	B (9)
	Plant Life Forms	B (9)
Index Score		84

Stressors 1 total, 0 with significant negative effect - indicated below with *

Attribute	Buffer And Landscape Context		
	Passive recreation (bird-watching, hiking, etc.)		

This report was created on Monday September 02, 2019, 8:26 PM using the SFEI eCRAM Mapper at www.cramwetlands.org

regulatory permit. Please see "Using CRAM (California Rapid Assessment Method) To Assess Wetland Projects As an Element of Regulatory and Management Programs" CWMW, Oct. 13, 2009.

\$local_conn_string is host=redbud_prd port=5432 dbname=cram user=cramwebuser password=*redacted*

GDE Level I Inventory Assessment Summary: Alder Creek Meadow

On August 5, 2019, Tim Stroope (USFS Hydrogeologist) and Eddie Gazzetti (USFS Hydrogeologist) conducted a GDE Level I Inventory assessment for a small fen, in Alder Creek Meadow, on the Tahoe National Forest. The GDE Level I protocol was specifically developed for inventorying and assessing the condition of groundwater dependent ecosystems (GDEs) typically encountered and managed on NFS lands with an emphasis on hydrologic function, biology and soil condition. The protocol does not assign ratings but does use a series of management indicator questions to assess GDEs. The information below summarizes the key findings from this assessment.

Small Fen (northwestern part of Alder Creek Meadow)

Hydrologic function: The fen was ~3200 m² downgradient of a spring. Flow was measured in the channel that originates at the spring at the eastern end of the fen. Flow was measured at 0.5 L/s. We augured a 67 cm hole in the middle of the fen with a water table depth of 0. There was a distinct channel running from the spring source through the middle of the fen that may be dewatering the fen. This main channel may be the result of channelized flow from and upgradient road and culvert. There were many other small channels in the fen as well as an adjacent trail.

Biology: The vegetation in the fen was comprised largely of peat-forming and wetland indicator species. There were favorable conditions adjacent to the fen (i.e. standing mature trees) that will contribute to the continued development of the peat body. A faunal assessment was not conducted at the site.

Soil condition: At the augured hole, peat peat was identified down to a depth of 43 cm where there was a transition to mineral soil. Fen characteristics, including the presence of a histosol, were observed.

MANAGEMENT INDICATOR TOOL

Management Indicators were assigned values based on the condition of this fen site and no the entire meadow.

No False (No) values were assigned.

Watershed (surface water) not altered (Runout Channel see **Hydrologic function**, Vegetation Composition, TES, SOI/SOC, Focal Floral Species, TES, SOI/SOC, Focal Faunal Species, and Invasive Species, and Construction, Roads not adversely affecting (see **Hydrologic function**)

Alder Creek Meadow - Meadow Assessment Comparison Project Survey Summary Report, Springs Online Site ID 250064

Location: The Alder Creek Meadow ecosystem is located in Nevada County in the Truckee California, Nevada 16050102 HUC, managed by the US Forest Service. The spring is located in the Tahoe NF, Truckee RD, in the Hobart Mills USGS Quad, at 39.37677, -120.17828 measured using a GPS (WGS84). The elevation is approximately 1756 meters. Tim Stroope; Eddie Gazzetti surveyed the site on 8/06/19 for 01:30 hours, beginning at 10:30, and collected data in 4 of 10 categories. This survey was conducted under the Meadow Assessment Comparison project using the GDE Level I USFS protocol.

Fig 1.1 Alder Creek Meadow: Center of site upslope

Physical Description: Alder Creek Meadow is a helocrene spring. Alder Creek Meadow is a 428,000 SqM acre Sierra Nevada meadow ecosystem. The meadow contains multiple spring fed channels that flow into Prosser Creek Reservoir. At least one fen site has been identified and surveyed.

Geomorphology: Alder Creek Meadow emerges as a contact spring from a unconsolidated, alluvium rock layer. The emergence environment is subaerial, with a gravity flow force mechanism.

Access Directions: The meadow is accessible from the Donner Party Picnic Area on Highway 89.

Survey Notes: The fen that this survey was conducted for is part of the larger Alder Creek Meadow ecosystem that is approximately 428,000 SqM. It is located in the north fork of the meadow. The total area of the site is 3200 square meters, determined by Estimate from map or image. Surveyors reported fen characteristics. Surveyors also reported histic or histosol characteristics.

Evidence of groundwater influence: Flow from spring source, presence of peat, standing water, wetland vegetation.

Cover Type	Percent Cover
Spring	2
Channel/brook	3
Peatland	20
Wetland	75
Open Water	
Other/Unknown	

Flow: Surveyors measured a flow of 0.1 liters/second, using a v-notch weir. Flow was adjusted for an estimate of 95% of site flow capture. Inflow channel This spring is perennial, with a neorefugium persistence. The site was Groundwater inflow dominated, and both groundwater and surface water outflow significant.

Table 1.2 Alder Creek Meadow Water Table Measurements.

Location Description	Location	Source	Water Table Depth cm	Hole Depth cm	Dry?
Spring source	Other	Soil hole	0		No

Water Quality: Location 1: in an excavated hole in standing water at 10:21:00. Location 2: at a stream exiting the wetland in flowing water at 10:44:00.

Characteristic Measured	Average Value	Location Number	Device	Comments
Dissolved oxygen (field) %	61	2	YSI ProPlus	
saturation	01	2		
Oxygen Reduction Potential in mV	24	2	YSI ProPlus	
pH (field)	7.17	2	YSI ProPlus	
Specific conductance (field) (uS/cm)	242	2	YSI ProPlus	
Temperature, water C	16	2	YSI ProPlus	

Table 1.3 Alder Creek Meadow Water Quality Measurements.

Soils: Surveyors dug a 67 cm deep soil pit that was targeted, other (explain).

Fen characteristics: Yes

Histic Histosol: Yes

Table 1.4 Alder Creek Meadow Hydrologic Alteration

Water diversion (permanently diverted)	
Water diversion (water eventually returns to site)	
Upgradient extraction of surface water or groundwater	
(prespring emergence)	

Downgradient capture of surface water or groundwater	
(post-spring emergence)	
Extraction of water within a wetland	
Extraction of water at spring source	
Regulated water flow by impoundment/dam	
Pollution	
Flooding	
Wells	
Other hydrologic disturbance	
None observed	Х
Diverted Volume	
Percent Diverted	

CompactionImage: CompactionDebris flowImage: CompactionDepositionImage: CompactionErosion (general)Image: CompactionEvaporate depositionImage: CompactionExcavationImage: CompactionGround disturbance (general)Image: CompactionGully erosionImage: CompactionMass wastingImage: CompactionMiningImage: CompactionPedestals or hummocks (by people or animals)Image: CompactionPedestals (small-scale, rain-splash induced)Image: CompactionPipesImage: CompactionRill erosionImage: CompactionSheet erosionImage: CompactionSlumpImage: CompactionSplash erosion/soil crustImage: CompactionWind erosionImage: CompactionSoil mixing/churningImage: CompactionSoil removal (peat mining)Image: CompactionCharles coll disturbanceImage: CompactionOther soil disturbanceImage: Compaction	Table 1.5 Alder Creek Meadow Soil Alteration				
Debris flowImage: constraint of soilDisplacement of soilImage: constraint of soilErosion (general)Image: constraint of soilEvaporate depositionImage: constraint of soilExcavationImage: constraint of soilGround disturbance (general)Image: constraint of soilGully erosionImage: constraint of soilMass wastingImage: constraint of soilMiningImage: constraint of soilPedestals or hummocks (by people or animals)Image: constraint of soilPedestals (small-scale, rain-splash induced)Image: constraint of soilPipesImage: constraint of soilRuts (from vehicle tread)Image: constraint of soilSheet erosionImage: constraint of soilSumpImage: constraint of soilSoil mixing/churningImage: constraint of soilSoil mixing/churningImage: constraint of soilSoil removal (peat mining)Image: constraint of soil disturbanceOther soil disturbanceImage: constraint of soil disturbance	Channel erosion				
DepositionDepositionDisplacement of soilErosion (general)Evaporate depositionExcavationGround disturbance (general)Gully erosionMass wastingMiningPedestals or hummocks (by people or animals)Pedestals (small-scale, rain-splash induced)PipesRill erosionRuts (from vehicle tread)Sheet erosionSlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Compaction				
Displacement of soilImage: constant of soilErosion (general)Image: constant of soilEvaporate depositionImage: constant of soilExcavationImage: constant of soilGround disturbance (general)Image: constant of soilGully erosionImage: constant of soilMass wastingImage: constant of soilMiningImage: constant of soilPedestals or hummocks (by people or animals)Image: constant of soilPedestals (small-scale, rain-splash induced)Image: constant of soilPipesImage: constant of soilRill erosionImage: constant of soilSheet erosionImage: constant of soilSlumpImage: constant of soil crustWind erosionImage: constant of soil crustSoil mixing/churningImage: constant of soil crustSoil removal (peat mining)Image: constant of soil disturbanceOther soil disturbanceImage: constant of soil crust	Debris flow				
Erosion (general)Image: constant of the section of the s	Deposition				
Evaporate depositionEvaporate depositionExcavationGround disturbance (general)Gully erosionMass wastingMiningPedestals or hummocks (by people or animals)Pedestals or hummocks (by people or animals)Pedestals (small-scale, rain-splash induced)PipesRill erosionRuts (from vehicle tread)Sheet erosionSlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Displacement of soil				
ExcavationImage: constant of the second disturbance (general)Ground disturbance (general)Image: constant of the second disturbance (general)Gully erosionImage: constant of the second disturbance (general)Mass wastingImage: constant of the second disturbance (general)MiningImage: constant of the second disturbance (general)Pedestals (small-scale, rain-splash induced)Image: constant of the second disturbance (general)PipesImage: constant of the second disturbance (general)Sheet erosionImage: constant of the second disturbance (general)Soil removal (peat mining)Image: constant of the second disturbance (general)Other soil disturbanceImage: constant of the second disturbance (general)	Erosion (general)				
Ground disturbance (general)Gully erosionMass wastingMiningPedestals or hummocks (by people or animals)Pedestals or hummocks (by people or animals)Pedestals (small-scale, rain-splash induced)PipesRill erosionRuts (from vehicle tread)Sheet erosionSlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Evaporate deposition				
Gully erosionImage: Constraint of the second se	Excavation				
Mass wastingImage: Constraint of the second of	Ground disturbance (general)				
MiningImage: Constraint of the second se	Gully erosion				
Pedestals or hummocks (by people or animals)Pedestals (small-scale, rain-splash induced)PipesRill erosionRuts (from vehicle tread)Sheet erosionSlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Mass wasting				
Pedestals (small-scale, rain-splash induced)PipesRill erosionRuts (from vehicle tread)Sheet erosionSlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Mining				
PipesImage: Second	Pedestals or hummocks (by people or animals)				
Rill erosionRuts (from vehicle tread)Sheet erosionSlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Pedestals (small-scale, rain-splash induced)				
Ruts (from vehicle tread)Sheet erosionSlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Pipes				
Sheet erosionSlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Rill erosion				
SlumpSplash erosion/soil crustWind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Ruts (from vehicle tread)				
Splash erosion/soil crustSplash erosion/soil crustWind erosionImage: Soil mixing/churningSoil mixing/churningImage: Soil removal (peat mining)Soil removal (peat mining)Image: Soil crustTrails (by people or animals)Image: Soil disturbance	Sheet erosion				
Wind erosionSoil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Slump				
Soil mixing/churningSoil removal (peat mining)Trails (by people or animals)Other soil disturbance	Splash erosion/soil crust				
Soil removal (peat mining) Trails (by people or animals) Other soil disturbance	Wind erosion				
Trails (by people or animals) Other soil disturbance	Soil mixing/churning				
Other soil disturbance	Soil removal (peat mining)				
	Trails (by people or animals)				
None observed X	Other soil disturbance				
	None observed	Х			

Table 1.5 Alder Creek Meadow Soil Alteration

Table 1.6 Alder Creek Meadow Structures

Buried utility corridors	
Enclosure (such as spring house, spring box or concrete	
enclosure)	
Erosion control structure	
Exclosure fence	

Oil and gas well	
Pipeline	
Point source pollution	
Power lines	
Road (includes construction and maintenance)	
Other structural disturbance	
None observed	Х

Table 1.7 Alder Creek Meadow Recreational Effects

Camp sites	
Tracks or trails by vehicles (ATV, 4-wheel drive, etc.)	
Other recreational disturbance	
None observed	Х

Table 1.8 Alder Creek Meadow Animal Effects (multiple ok)

Beaver activity	
Feral animals	
Grazing or browsing (by ungulates)	
Wild animals	
Livestock	
Trails by animals or people	X
Trampling (by ungulates, native or nonnative)	
Other animal disturbance	
None observed	

Table 1.9 Alder Creek Meadow Miscellaneous (multiple ok)

Fire	
Tree cutting (timber harvest or other)	
Refuse disposal	
Other misc disturbance	
None observed	Х

Table 1.10 Alder Creek Meadow Management Indicators

Management Indicators	Response	Comment
Hydrology		
Aquifer Functionality: No evidence suggests that the aquifer supplying groundwater to the site is being affected by groundwater withdrawal or loss of recharge.	True	
Watershed Functionality: Within the watershed, no evidence suggests upstream/upgradient hydrologic alteration that could adversely affect the GDE site.	Assess	Channelized flow from upgradient culvert could be dewatering GDE
Water Quality: Changes in water quality (surface or subsurface) are not affecting the groundwater dependent ecosystem site.	True	
Geomorphology and Soils		

Landform Stability: No evidence of human-caused		
mass movement or other surface disturbance affecting	True	
the GDE site stability.		
Runout Channel: The channel, if present, is functioning		
naturally and is not entrenched, eroded, or otherwise	True	
substantially altered.		
Soil Integrity: Soils are intact and functional. For		
example, saturation is sufficient to maintain hydric	Taura	
soils, if present; there is not excessive erosion or	True	
deposition.		
Biology		
Vegetation Composition: Site has anticipated cover of		
plant species associated with the site environment,		
and no evidence suggests that upland species are	UA	
replacing hydric species.		
Vegetation Condition: Vegetation exhibits seasonally		
appropriate health and vigor.	UA	
TES, SOI/SOC, Focal Floral Species: Anticipated floral		
	UA	
species are present.		
Faunal Species: Anticipated aquatic and terrestrial		
faunal species associated with the site environment	UA	
are present.		
TES, SOI/SOC, Focal Faunal Species: Anticipated faunal	UA	
species are present.	-	
Invasive Species: Invasive floral and faunal species are	UA	
not established at the site.	0/1	
Disturbances		
Flow Regulation: Flow regulation is not adversely	Truo	
affecting the site.	True	
Construction and Road Effects: Construction,		
reconstruction, or maintenance of physical		Road and trail upgradient of GDE. Not sure
improvements, including roads, is not adversely	UA	if affects site at this time.
affecting the site.		
Fencing Effects: Protection fencing and exclosures are		
appropriate and functional.	NA	
Herbivore Effects: Herbivory is not adversely affecting		
the site.	True	
Recreational Effects: Recreational uses, including trails,		
are not adversely affecting the site.	True	
Other Disturbance Effects: Wildland fire, insect,		
disease, wind throw, avalanches, or other disturbances	Truo	
	nue	
are not adversely affecting the site.		
Administrative Context		
Cultural Values: Archaeological, historical, or tribal		
values will not affect inventory, restoration, use, or	UA	
management of this site.		
Land Ownership: The entire site and immediate area is		
under the jurisdiction and management of the Forest	True	
Service.		

Other Landowner Actions: Activities or management on lands outside Forest Service jurisdiction are not adversely affecting the site.	UA
Land Management Plan: The land and resource management plan provides for effective site protection.	UA
Environmental Compliance: Authorized and administrative uses are in compliance and are not adversely affecting the site.	UA
Water Uses: There are no substantial water uses in the watershed, or in the aquifer supplying groundwater to the site, that could directly or cumulatively adversely affect the GDE.	UA
Water Rights: Water rights have been filed for the site under state law or water uses exempted under state law are documented. FS federal reserved rights documented as appropriate. Third-party water use in accordance with all elements of the water right or conditions of the exemption, & with FS authorization that allows the use.	UA

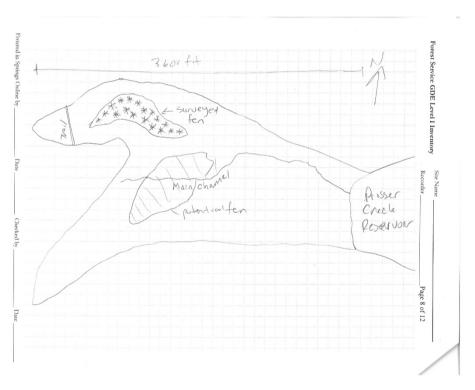


Fig 1.2 Alder Creek Meadow Sketchmap: Sketch Map

Fig 1.3 Alder Creek Meadow: Center of site downslope

Fig 1.4 Alder Creek Meadow: Soil core location

Fig 1.5 Alder Creek Meadow: Spring source

Fig 1.6 Alder Creek Meadow: Water quality measurement 2

Version: 8/25/14

Meadow Name	Date : / / / MM DD YYYY
GPS Location:NW GPS Datum (e.g., WGS 84, NAD 27)	
Elevation (ft) Slope (°) County	
Watershed (HUC8) Landowner	
USGS Quad Name 7.5'	or 15' (circle one)
Observers:	

	CONDITION CATEGORY			
Parameter	Natural Condition Slightly impacted		Moderately Impacted	Heavily Impacted
1. Bank Height in Main Channel (measured in the riffle).	Little or no channel incision, Banks 0-2 feet high along >95% of the channel length.	Bank heights of 2-4 feet along less than 25% of the channel length; 0-2 feet elsewhere.	Bank heights of 2-4 feet along more than 50% of channel length; higher than 4 feet along less than 25% of channel length.	Bank heights > 4 feet along more than 25% of channel length. Note if sections of channel have banks 0-2 feet high.
Score:	4	3	2	1
Second Channel (if present):	4	3	2	1
2. Bank Stability	<5% of bank length is unstable.	5-20% of bank length is unstable.	20-50% of bank is unstable	>50% of bank is unstable.
Score:	4	3	2	1
Second Channel (if present):	4	3	2	1
3. Gullies/ditches outside of main channel	No gullies or ditches outside of the main channel	Ditch or start of a gully outside of the main channel. Combined length of all gullies & ditches is less than 1/10 th meadow length.	Combined length of all gullies and ditches up to 1/2 of meadow length	Combined length of all gullies and ditches is greater than 1/2 of meadow length.
Score:	4	3	2	1
4. Vegetation Cover	Graminoids account for 75-100% of the area covered by vegetation	50-75% graminoid cover	Forbs dominate. 25-50% graminoid cover.	Forbs dominate. <25% graminoid cover.
Score:	4	3	2	1
5. Bare Ground	Bare ground covers less than 5% of the meadow area.	Bare ground covers 5-10% of meadow area	Bare ground covers 10- 15% of meadow area.	Bare ground covers > 15% of meadow area.
Score:	4	3	2	1
6. Conifer or Upland Shrub Encroachment	No upland shrub or conifer encroachment. Raised, topographically distinct areas may have upland species present, but not the meadow surface.	Few encroaching upland species; <10% of total meadow area	Encroaching upland species cover 10-20% of total meadow area	Encroaching upland species cover >20% of total meadow area
Score:	4	3	2	1
and Wildlife coundaries		ican Rivers onnect Us	Total Possible Points Total/Possible	

Additional Observations:

2. □Yes □No Headcut present in meadow? Number of headcuts_____

Describe the headcuts (Photo number, jump height, width, length, potential for movement. GPS or record location on map):

3. □Yes □No Invasive species observed? Describe _____

4. □Yes □No Fish observed? Describe _____

5.
□Recent □Old □None Evidence of beavers? Describe _____

- 6. \Box Yes \Box No Aspen present in or adjacent to meadow?
- 7. \Box Yes \Box No Accessible by vehicle?
- 8. Grazing observations. Check all that are present:

 \Box Trails \Box Stubble \Box Dung in channels \Box Hoof prints on banks

9. Human impacts. Check all that are present in the meadow:

□Trail □Evidence of OHV use □Road □Corral □Building *possible fat tire bike

10. Adjacent land use. Check all that are present within 200 yards of meadow:

 \Box Culvert \Box Bridge \Box Road \Box Building

- 11. Gopher disturbance covers_____% of meadow area (from toe-point transects).
- 12. Willow, alder and aspen cover_____% of meadow area.
- 13. Comments on ease of/ barriers to restoration (e.g., are impacts localized or disbursed throughout meadow, access, adjacent land use)

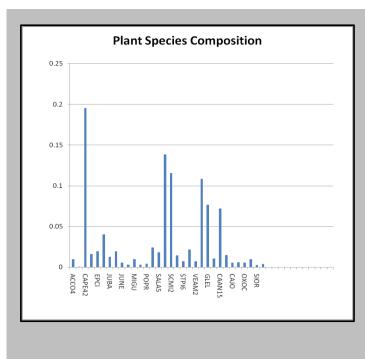
Additional Notes & Comments:

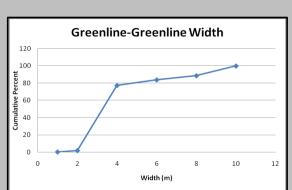
Meadow N Observers				_	
	Graminoid	Forb	Bare: No Gopher	Bare: Yes Gopher	Other Cover: moss, litter,etc.
	Grammold			doprier	
Uppor					
Upper Transect					
Middle					
Transect					
Lower Transect					
Subtotal	A:	В:	C:	D:	E:

Total:	= A+B+C+D+E				
Total Veg:	= A+B				
Total Bare:	= C+D				
% Gramminoio	% Gramminoid (Question 4)			0%	
% Bare (Question 2)			= Total Bare/Total X 100%		
% Gopher Disturbed (for Add'l ?'s)			= D/Total X 100%		

Meadows Assessment Photo Log

Photo #	Description	Notes
Meadow Scorecare	4	Page 23


Meadows Assessment Photo Log (Continued)


Photo #	Description	Notes
1 11010 11	2000110101	

Additional Notes:

Multiple Indicator Monitoring (MIM) Greenline Ecological Status Rating = 92.7 (PNC) Potential Natural Community; Winward Greenline Stability Rating = 7.73 (High)

Summary Anal	ysis		ALL 0 1								
		Pasture =	Alder Creek								
DHUKT-TERM	I INDICATORS	Date =	8/6/2019			01mm					
	Stubble Height	(Link to SH		Woody Use		Streambanks					
MedianSH all Key species (inches))	Average SH for all key species (inches)	Dom key species for SH	Avg Ht of dom key species (inches)	Woody Species Use - all woody species (%)	Streambank Alteration (%)	Streambank stability(%)	Streambank cover (%)	Covered - Stable (%)	Covered - Unstable (%)	Uncovered - Stable (%)	Uncovered - Unstable (%)
		#DIV/0!			0	1	1	1	0	0	
=	0	1		0	1	57	57	57	0	0	
95% conf Int ¹ 95% Cl ²	0.93	<u>^</u>		0.057	0.062	0.05	0.05	0.05	0.05	0.05	^ 0.
ONG-TERM I				0.007	0.002	0.00	0.00	0.00	0.00	0.00	0.
egetation Ra			Winward			Miscellaneous	Vegetation Metrie				
	Greenline Ecological Status Rating	Site Wetland Rating	greenline stability rating	Vegetation Biomass Index	Percent Rhizomatous Woody	Percent Forbs	Plant Diversity Index	(% by Constancy)	(%)	Woody Species Frequency (N)	Hydric Herbaceous (%)
Rating	92.70191831 PNC	76.62154031 FACW	6.732370638 High			0.303030303	21.42968192	0.757575758	0.141414141	28	0.60101010
=	*	*	*	28	10	34	198	94	17		
95% conf Int ¹ 95% Cl ²	* 5.75	3.718077842	* 0.16	*	*	*	*	* 6.2	*	*	*
ONG-TERM I								6.2	5.9		e
	Woody Species Age	e Class	Other metrics	Hydric woody							
Percent seedlings	Percent Young	Percent Mature	Woody composition by plot (%)	plant composition (%)	Hydric Plants (% by composition)						
0	0.076923077	0.923076923	0.3	0.2125	0.782430806	MORE					
0			24	47	17						
0 0.207147927	*	* 24	*	17 *	* 17						
0.07	0.07	0.07	5.9	5.9	5.9						
No confidence Vinward Ri Group	parian Capability]	97700 Con Too	h Dan DMRS (notmont of Agricu	Itura Farat Saa	ico Pocku		
No confidence Vinward Ri Group *Winward, A.F Mountain Re- Vinward Green -4 Low -6 Mid		n, UT. 49 pp, A	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU =25		h. Rep. RMRS-C	STR-47. U.S. De	partment of Agricu	lture, Forest Serv	ice, Rocky		
Winward Ri Group **Winward, A.H Mountain Re	Parian Capability I. 2000. Monitoring th search Station, Ogde nline Stability Rating Low Mid	e riparian resou n, UT. 49 pp, A Ecological Star 0-15 Very ear 16-40 Early se 41-60 Mid ser 61-85 Late se	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU =25 FACU+ =33	Rating FAC=50 FACW- =67 FACW =75 FACW+ =83				lture, Forest Serv	ice, Rocky		
No confidence Winward Ri Group "Winward, A.F Mountain Re: Ninward Green Kinward Green Kin	Parian Capability	e riparian resou n, UT. 49 pp, A Ecological Star 0-15 Very ear 16-40 Early se 41-60 Mid ser 61-85 Late se 86+ PNC	ppendix A Site Wetland R UPL = 0 FAC- =17 FACU =25 FACU+ =33 FAC- =43	Rating FAC=50 FACW- =67 FACW =75 FACW+ =83 OBL= 100	Narrativ	ve Summar	у				
No confidence Winward Ri Group "Winward, A.F Mountain Re- Winward Greener 44 Low 4-6 Mid 4-6 Mid 4-6 High This site beg Df what was There was n	Parian Capability I. 2000. Monitoring th search Station, Ogde nline Stability Rating Low Mid	e riparian resou n, UT. 49 pp, A Ecological Stat 0-15 Very ear <u>16-40 Early se</u> <u>41-60 Mid ser</u> 61-85 Late se 86+ PNC stream chann hered data sh	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU = 25 FACU + =33 FAC- =43 real then ended ows a robust on (cow hoof	Rating FAC=50 FACW- =67 FACW =75 FACW+ =83 OBL= 100 d as a seires c stream chann print ½ inch du	Narrativ of bevaer dam el with no sign eep) due to th	/e Summar s and pools, e ns of bank erc e dominate co	y effecting the sur ision or unstabil	vey results by lity.	having to stop	42 (Carex petilla)	
No confidence Vinward Ri Group *Winward, A.F Mountain Re: Vinward Green 4 Low -6 Mid -6 High -6 High -6 High -6 High -6 High -7 Finis site beg Df what was Finis end the second	parian Capability A. 2000. Monitoring th search Station, Ogde nline Stability Rating Low Mid High yan with a narrow surveyed the gath o apparent stream	Ecological Stat 0-15 Very ear 16-40 Early se 41-60 Mid ser 61-85 Late se 86+ PNC stream chann hered data sh bank alterati were very abu	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU =25 FACU =25 FACU = 33 FAC- =43 rel then ender ows a robust on (cow hoof nda (<i>Salix geye</i> dominate co	Rating FAC=50 FACW=67 FACW=75 FACW=83 OBL= 100 d as a seires c stream chann print ½ inch du rriana and Salix ver of CAAN1:	Narrativ of bevaer dam el with no sigu eeep) due to th <i>clemmonii</i>). Str 5, 48% cover	re Summar s and pools, e ns of bank erc e dominate co reambank stab of CAPE42, a	y effecting the sur psion or unstabil pover of CAAN15 ility was good, wi und 48% cover	vey results by l ity. i (<i>Carex angusta</i> th no uncovered of SCMI2 (<i>Scr</i> i	having to stop tra) and CAPE- t or eroding ba	42 (<i>Carex petilla)</i> Inks.	along the
No confidence Vinward Ri Broup Winward, A.F Mountain Re- Vinward Green 4 Low -6 Mid 6 High -6 High -7 High	parian Capability 4. 2000. Monitoring th search Station, Ogde nline Stability Rating Low Mid High gan with a narrow surveyed the gath o apparent stream dric woody species Ratings were high	Ecological Stat 0-15 Very ear 16-40 Early se 41-60 Mid ser 61-85 Late se 86+ PNC stream chann hered data sh bank alterati were very abu	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU =25 FACU =25 FACU = 33 FAC- =43 rel then ender ows a robust on (cow hoof nda (<i>Salix geye</i> dominate co	Rating FAC=50 FACW=67 FACW=75 FACW=83 OBL= 100 d as a seires c stream chann print ½ inch du rriana and Salix ver of CAAN1:	Narrativ of bevaer dam el with no sigu eeep) due to th <i>clemmonii</i>). Str 5, 48% cover	re Summar s and pools, e ns of bank erc e dominate co reambank stab of CAPE42, a	y effecting the sur psion or unstabil pover of CAAN15 ility was good, wi und 48% cover	vey results by l ity. i (Carex angusta th no uncovered of SCMI2 (Scru irveys.	having to stop rta) and CAPE d or eroding ba ipus microca	42 (<i>Carex petilla)</i> inks. <i>rpus</i>). Tthe Pla	along the
No confidence Vinward Ri Broup Winward, A.F Mountain Re- Vinward Green 4 Low -6 Mid 6 High -6 High -7 His site beg Df what was n recenline, hy /egetation F vas high at 2	Parian Capability A. 2000. Monitoring th search Station, Ogde nline Stability Rating Low Mid High gan with a narrow surveyed the gath o apparent stream dric woody species Ratings were high 21%. Overall this s	Ecological Stat 0-15 Very ear 16-40 Early se 41-60 Mid ser 61-85 Late se 86+ PNC stream chann hered data sh bank alterati were very abu	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU =25 FACU =25 FACU = 33 FAC- =43 rel then ender ows a robust on (cow hoof nda (<i>Salix geye</i> dominate co	FACW- =67 FACW = 75 FACW = 75 FACW + =83 OBL= 100 d as a seires o stream chann print ½ inch d rriang and Salix ver of CAAN11 with the metr	Narratin f bevaer dam el with no sign eep) due to th <i>lemmonii</i>). St 5, 48% cover ics used and	/e Summar s and pools, e s of bank ero e dominate co reambank stab of CAPE42, a will be a base	y effecting the sur sion or unstabil over of CAAN15 ility was good, wi und 48% cover line for future su	vey results by l ity. i (Carex angusta th no uncovered of SCMI2 (Scru irveys.	having to stop ta) and CAPEr d or eroding ba ipus microca	42 (<i>Carex petilla</i>) inks. <i>rpus</i>). Tthe Pla 6 _>8 9	along the
No confidence Winward Ri Group "Winward, A.F Mountain Re- Winward Green 4 Low 1-6 Mid -6 High This site beg Df what was no greenline, hy /egetation F was high at 2	Parian Capability A. 2000. Monitoring th search Station, Ogde nline Stability Rating Low Mid High gan with a narrow surveyed the gath o apparent stream dric woody species Ratings were high 21%. Overall this s	e riparian resou n, UT. 49 pp, A Ecological Stat 0-15 Very ear 16-40 Early se 41-60 Mid ser 61-85 Late se 86+ PNC stream chann ered data sh bank alterati were very abu due to a 66% site rated higi	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU = 25 FACU + =33 FAC- =43 FAC	Rating FAC=50 FACW = 67 FACW = 75 FACW = 83 OBL = 100 d as a seires of stream chann print ½ inch di criang and Salix ver of CAAN11: with the metric Class Height range Total plants Height Frequency	Narrativ of bevaer dam el with no sign eep) due to th (<i>lemmonii</i>). Str 5, 48% cover ics used and to 1 <.5	/e Summar s and pools, e ns of bank erc e dominate co reambank stab of CAPE42, a will be a base	y effecting the sur sion or unstabil over of CAAN15 lility was good, wi und 48% cover line for future su 3 1-2 11	vey results by lity. i (Carex angusta th no uncovered of SCMI2 (Scru rveys. 4 2 - 4 1 3	having to stop ta) and CAPE4 for eroding ba ipus microca	42 (<i>Carex petilla</i>) inks. <i>rpus</i>). Tthe Pla 6 8 9 12 100	along the
No confidence Winward Ri Group "Winward, A.F Mountain Re- Winward Green 4 Low 1-6 Mid -6 High This site beg Df what was no greenline, hy /egetation F was high at 2	Parian Capability A. 2000. Monitoring th search Station, Ogde nline Stability Rating Low Mid High gan with a narrow surveyed the gath o apparent stream dric woody species Ratings were high 21%. Overall this s	e riparian resou n, UT. 49 pp, A <u>Ecological Stat</u> 0-15 Very ear 16-40 Early se 41-60 Mid ser 61-85 Late se 86+ PNC stream chann nered data sh bbank alterati were very abu	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU = 25 FACU + =33 FAC- =43 FAC	Rating FAC=50 FACW=67 FACW=75 FACW=75 FACW+=83 OBL= 100 d as a seires of stream chann print ½ inch de prina and Salix ver of CAAN1 with the metr Class Height range Total plants Height Frequency B5th Percentile 50th Percentile	Narrativ of bevaer dam el with no sign eep) due to th (<i>lemmonii</i>). Str 5, 48% cover ics used and to 1 <.5	re Summar s and pools, e ns of bank erco e dominate co reambank stab of CAPE42, a will be a base control of CAPE42, a solution of CA	y effecting the sur- sion or unstabil over of CAAN15 ility was good, wi and 48% cover line for future sur- 1 - 2 1 - 3 3 - 2 1 - 2	vey results by lity. i (Carex angusta th no uncovered of SCMI2 (Scru rveys. 4 2 - 4 1 3	having to stop ta) and CAPE4 for eroding ba ipus microca	42 (<i>Carex petilla</i>) Inks. <i>rpus</i>). Tthe Pla 6 >8 9 12	along the
No confidence Vinward Ri Group "Winward, A.F Mountain Re- "Winward Green 4 Low 1-6 Mid 1-6 Mid 1-6 High This site beg Df what was no preenline, hy /egetation F vas high at 2	Parian Capability A. 2000. Monitoring th search Station, Ogde nline Stability Rating Low Mid High gan with a narrow surveyed the gath o apparent stream dric woody species Ratings were high 21%. Overall this s	e riparian resou n, UT. 49 pp, A Ecological Stat 0-15 Very ear 16-40 Early se 41-60 Mid ser 61-85 Late se 86+ PNC stream chann ered data sh bank alterati were very abu due to a 66% site rated higi	ppendix A Site Wetland F UPL = 0 FAC- =17 FACU = 25 FACU + =33 FAC- =43 FAC	Rating FAC=50 FACW=67 FACW=75 FACW+=83 OBL= 100 d as a seires c stream chann print ½ inch dư r/ana and Salix ver of CAAN1: with the metr Class Height range Total plants Height Frequency 85th Percentile	Narrativ of bevaer dam el with no sign eep) due to th (<i>lemmonii</i>). Str 5, 48% cover ics used and to 1 <.5	re Summar s and pools, e ns of bank erco e dominate co reambank stab of CAPE42, a will be a base control of CAPE42, a solution of CA	y effecting the sur psion or unstabil over of CAAN15 ility was good, wi and 48% cover line for future su 1-2 1-2 11 1.5 57.14285714	vey results by lity. i (Carex angusta th no uncovered of SCMI2 (Scru rveys. 4 2 - 4 1 3	having to stop ta) and CAPE4 for eroding ba ipus microca	42 (<i>Carex petilla</i>) inks. <i>rpus</i>). Tthe Pla 6 8 9 12 100	along the

	PLANT SPE	CIES COMPOS	ITION
Species Plant	Greenline	Cover	Constancy
Code	Composition	Cover	Constancy
ACCO4	1%	80%	1%
CAIN10	0%	5%	1%
CAPE42	20%	48%	17%
ELTR7	2%	23%	3%
EPCI	2%	20%	4%
EQAR	4%	20%	9%
JUBA	1%	26%	2%
JUEF	2%	40%	2%
JUNE	1%	45%	1%
JUXI	0%	25%	1%
MIGU	1%	20%	2%
PHPR3	0%	25%	1%
POPR	0%	18%	1%
SAGE2	2%	67%	2%
SALA5	2%	75%	1%
SALE	14%	96%	6%
SCMI2	12%	48%	10%
SOCA6	1%	30%	2%
STPI6	1%	20%	2%
SYSP	2%	30%	3%
VEAM2	1%	20%	2%
PICO	11%	82%	6%
GLEL	8%	29%	11%
ARLO6	1%	22%	2%
CAAN15	7%	66%	5%
LUPO	1%	25%	3%
CAJO	1%	23%	1%
JUIX	1%	25%	1%
OXOC	1%	23%	1%
ELGL	1%	80%	1%
SIOR	0%	20%	1%
ARMO4	0%	15%	1%

Portion of Comprehensive Report from the PFC Assessments for Meadow Assessment Protocol Comparison and Review of 2019

Sherman Swanson and Meadow Assessment Protocol Comparison and Review Team

If multiple reaches are completed, the ID team can summarize their findings in a comprehensive report. **This is an excerpt of the combined report.** A report provides helpful information for future projects and analyses.

I. Introduction – To address the question of what protocol should be used to evaluate meadows, a Protocol Comparison and Review workshop was conducted with field work on August 5 &6 2019. Lotic riparian proper functioning condition (PFC) assessment was performed in three locations and lentic PFC assessment was performed in two locations. While this field assessment was performed by Sherman Swanson without the initial benefit of an interdisciplinary team, the input of others in field discussions was used to adjust some of the notes in this write up.

Location - Alder Creek Meadow

Meet at Donner Party Picnic Area, on Hwy 89, about 7 miles south from Sagehen (2.5 miles north of Hwy 80 interchange). Meadow is on south west corner of Prosser Reservoir, entire meadow is about 105 acres. UC Davis Meadow link: <u>https://meadows.ucdavis.edu/meadows/ucdsnm014565</u>

Reach starts at 39°22'28.6"N 120°10'37.3"W (yellow pin) going **downstream**. This lotic reach was extended down to the shore of Prosser Reservoir and therefore includes some area outside of this photo. In addition, the north lobe of the meadow was assessed with lentic PFC. The lentic area was assumed to be from Highway 89 (where a culvert comes under the highway from a spring west of the highway) down to the reservoir or to the stream (lotic reach) that flow into the reservoir. While the meadows converge, the zone of assessment for the lentic riparian meadow was the area influenced primarily by water from the north branch. That includes a fen dependent also on water upwelling to the east of the boardwalk trail that can be observed crossing the meadow east northeast of the meeting location.

II. PFC Assessment Results

- a. **Description of assessment area** While these three riparian meadows were distinct and on three separate streams, they were within 10 miles and represent a similar set of historic land uses including intensive logging and grazing by draft animals, beef and dairy cattle, and sheep. In recent decades, recreation has become a dominant land use.
- b. Reach delineation/stratification This step has not been performed in a systematic manner in any of the three watersheds. While reaches were identified to correspond with meadow protocol comparisons, the reaches do not necessarily represent logical reach delineation for a watershed-scale PFC assessment.
- c. **Description of potential(s)** This step was approximated in the field based upon field observations. This step should be modified to reflect the potential of the delineated reaches from step II-B above.
- d. **Reach narrative** (summary of PFC assessment results in narrative form): Alder creek and fen in the meadow north of the Donner Party Picnic Area – functional at risk – A dispersed spring complex west of Highway 89 is concentrated into a channel as water passes through a culvert under the highway. Downstream from this the channel splits into distributaries at several locations and water flow is augmented by springs that have generated a fen. Alder Creek historically supported an associated floodplain riparian meadow as evidenced by riparian meadow soils and highly sinuous pattern and low gradient of <2%. This stream-dependent meadow merges with the fen meadow. Prosser reservoir downstream of the meadow has widely different elevations through many or most years and among years. This and wave action erosion has created a lack of riparian vegetation that has apparently caused channel incision by up to ~ 8 feet. Although the incision could have been caused by other causes, the water level fluctuation prohibits return of riparian functions. The lowered base level for this creek and meadow puts the meadow - which contains a substantial fen - at risk. This is represented by channels that are increasingly incised as they near the Lake or the incised Alder Creek channel. Along these channels coming from the meadow/fen are over-steepened nick zones and headcuts or nick points.
- e. **Observations/findings** All three riparian areas are currently experiencing little or no livestock grazing. All three had an abundance of riparian stabilizer vegetation that is the source of considerable streambank stability. Two of the three, Kyburz Flat and Alder Creek are primarily impacted by infrastructure, an elevated road which is a floodplain dam concentrating flood energy and a reservoir with water level management that impairs riparian vegetation and functions.
- f. Issue identification and management recommendations While this road and reservoir are impactful in their current form and management, these impacts could be mitigated. The road could be hardened at the elevation of the floodplain meadow and the impacts of the water level fluctuation on the meadow could be limited through the use of headcut revetments that keep the risk of base level lowering from causing further headward migration of the incisions. While the road revision would be expensive and may not be necessary, the headcut revetments would be less expensive and more clearly important to the maintenance of riparian functions and values. However, these assessments without the

broader context of other riparian PFC and values assessments are not adequate for prioritizing riparian areas and riparian restoration or management projects. PFC assessment is the first step in integrated riparian management because it identifies the level of risk and the cause of risk across multiple riparian areas or reaches for broad consideration, along with riparian values for understanding priorities. Objectives (SMART = Specific (what to change), Measurable (with an established method), Achievable (within the potential of the site and likely to be met by the management methods), Relevant (to the management), and Timely (where the system is ready for that objective and within the time span of the plan)):

For Alder Creek and associated meadow fen base level lowering has created a clear need to prevent head ward migration of the headcuts or over-steepened reaches. This could be accomplished at a low level of expense using headcut revetments or other loose rock structures in the channels leading to the reservoir or to Alder Creek. The objective is to not allow incision to move head ward. While this would not restore hydrology to those small areas already drained, it would prevent further drainage of the fen and associated meadow. Upstream reaches of Alder Creek and its meadow are also put at risk due to beaver dams that are not stabilized by current beaver activity or by willows or alders anchoring those beaver dams with their roots. Cuttings could be planted in the dams to anchor them and downstream beaver dam analogs could be installed to provide additional woody structure to dissipate energy as water falls from the upstream elevation at floodplain level to the downstream elevation of the incised gully. Unstable banks caused by the incision are not a problem as gully widening is part of the recovery process that re-establishes floodplain width for energy dissipation within the gully.

III. Monitoring methods

- a. Management or restoration actions implemented should be documented as to methods and timing with photos taken to illustrate before and as-built conditions.
- b. Effectiveness monitoring would focus on objectives for projects or management actions: Are the headcut revetments stable and preventing head ward migration of incision? Are the beaver dams becoming stable with woody vegetation? Are they maintaining their terrace/meadow flooding function or do they or any beaver dam analogs need augmentation?
- IV. References (soils surveys, stream classifications, riparian vegetation classifications, etc.) –
 Dickard, M., Gonzales, M., Elmore, W., Leonard, S., Smith, D., Smith, S., Staats, J., Summers, P.,
 Weixelman, D., & Wyman, S. 2015. Riparian area management: Proper functioning condition assessment for lotic areas (Technical Report No. 1737-15 v.2). Denver, CO, USA: US
 Department of the Interior, Bureau of Land Management.
 - Prichard, D., F. Berg, W. Hagenbuck, R. Krapf, R. Leinard, S. Leonard, M. Manning, C. Noble, and J. Staats. 2003. Riparian area management: A user guide to assessing proper functioning condition and the supporting science for lentic areas. Technical Reference 1737-16. U.S. Department of the Interior, Bureau of Land Management, Denver, CO. 109 pp

Lentic Assessment Form Name of Riparian-Wetland Area:_Donner Party Picnic Area Loop Trail Meadow/Fen

Date:	tte: 8/6/2019 Segment/Reach ID: The part of the larger meadow that is hydrated by water coming under Highway 89 (through the culvert and by fen spring						
			Sherman Swanson with review by Meado l Comparison Team	W	GPS Start reach		
	ale for depend		reaks (if any) This part of the meadow is not	Alder Creek	GPS End reach		
	-		Fruckee District	Assessment M	lethod Field Assessment		
U			nonitoring data for area				
Potent	ial/Cap	ability o	or altered potential & Rationale:				
-	-	-	Spring fed base flows with snowmelt flood				
			this sloped wetland is a fen with drier mar	-	a large northern area that		
-		•	mittent snow melt with lentic aquifer rech	-			
chann		inties	_Most of the area is dominated by rhizom	atous sedges, a	ithough willows occur hear		
		historia	c pioneer trail used by the Donner Party a	nd other wago	n caravans skirts the north		
			and Prosser Reservoir is a big influence of	-			
0			risions have lower base level.				
Yes	No	N/A	HYDRO	LOGICAL			
Yes			1) Riparian-wetland area is saturated at or near the Notes: Saturation occurs in most areas not close				
			and other channels are headcutting into the mea	dow. Channels oc			
			meadow and indicate some level of altered satura	ation.			
	No		2) Fluctuation of water levels is not excessive. Not				
			significant issue to this site. The fluctuation prol action also enabled erosion that has led to incisio				
			observed on at least four channels.	in und to wering of	i base reven included by vere		
	No		3) Riparian-wetland area is enlarging or has achiev				
			shrinking due to dehydration from incisions note the Pioneer wagon road intercepts the intermitte	nt channel is also	dehydrating that area.		
	No		4) Upland watershed is not contributing to riparian	-			
			area west of Highway 89 is concentrated into a c concentrated flow persists as a channel in many				
			channel prior to the highway and the history of l				
Yes			5) Water quality is sufficient to support riparian-we	etland plants. Note	s: No issues observed.		
	No		6) Natural surface or subsurface flow patterns are r dikes, trails, roads, rills, gullies, drilling activities).				
			persists as a channel in many areas downstream				
			highway and the history of human uses. Presum				
			channel formation.				
Yes			7) Structure accommodates safe passage of flows (e.g., no headcut af	fecting dam or spillway). Notes:		
			The Only other structure in the meadow is a boardwa	alk that crosses o	ver the meadow. The boardwalk		
			has been constructed to not interfere with water		er ene meauo in the board walk		
1	1						

Yes	No	N/A	VEGETATION
Yes			8) There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery). Notes: No issues were observed.
Yes			9) There is diverse composition of riparian-wetland vegetation (for maintenance/recovery). [species present] Notes: There is a combination of fen/peat forming plants and a diversity of other sedges along with willows. This broad area has appears to have a very diverse flora that will be documented by other protocols.
Yes			 10) Species present indicate maintenance of riparian-wetland soil moisture characteristics. Notes: Many species are wetland obligates or facultative wetland species.
Yes			11) Vegetation is comprised of those plants or plant communities that have root masses capable of withstanding wind events, wave flow events, or overland flows (e.g., storm events, snowmelt). <i>[community types present]</i> Notes: These plant communities occur in most areas.
	No		12) Riparian-wetland plants exhibit high vigor. Notes: Vigor issues were observed only where the fluctuation of water level has had plants inundated excessively this spring and near headcuts where dehydration occurs. These areas are small. However they indicate an issue that is significant.
	No		13) Adequate riparian-wetland vegetative cover is present to protect shoreline/soil surface and dissipate energy during high wind and wave events or overland flows. [enough?] Notes: While most of the meadow is very adequately covered, the places that create risk close to the Reservoir are not. And their absence has created incision that prohibits the ability of vegetation to be successful in stabilizing up-gradient parts of the meadow from continued incision and dehydration.
Yes			14) Frost or abnormal hydrologic heaving is not present. Notes: This was not observed.
		NA	15) Favorable microsite condition (i.e., woody material, water temperature, etc.,) is maintained by adjacent site characteristics. Notes:

Yes	No	N/A	EROSION DEPOSITION
Yes			16) Accumulation of chemicals affecting plant productivity/composition is not apparent. Notes: No issue was observed
Yes			17) Saturation of soils (i.e., ponding, flooding frequency, and duration) is sufficient to compose and maintain hydric soils. Notes: This is true in almost all areas.
Yes			 18) Underlying geologic structure/soil material/permafrost is capable of restricting water percolation. Notes: No issue was observed other than the Reservoir water fluctuation.
	No		19) Riparian-wetland is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition). Notes: This low sediment environment causes any erosion in most areas to be net erosion. Incising near the incised Alder Creek and Prosser Lake is shrinking the meadow.
	No		20) Islands and shoreline characteristics (i.e., rocks, coarse and/or large woody material) are adequate to dissipate wind and wave event energies. Notes: Since Prosser Reservoir is relatively new it has not had the opportunity to form stable shorelines of rock such as would be necessary to dissipate wave

	energies. The combination of stressed vegetation from fluctuating water levels and high wave energies is causing this near reservoir meadow to unravel.
--	--

	SUMM	ARY DETERN	MINATION
Functional Rating			If yes, what are those factors?
Proper Functioning Condition			Flow regulations
X Functional - At Risk		PFC	Mining activities
Nonfunctional		PFC	Upstream channel conditions
Unknown			Channelization
Trend for Functional - At Risk:			Road encroachment
Apparent Monitored			Oil field water discharge
Upward Upward		FAR	Augmented flows
X Downward Downward			\underline{X} Other (specify)
Not ApparentStatic			Prosser Reservoir water level management and
Rationale _While most of the meadow			wave action
is sustaining itself, the downstream		NF	Are factors contributing to unacceptable
end is incising and headcutting,		TAT.	conditions within the control of the manager?
leading to dehydration.			Yes _X_ No
Are factors contributing to		N	If yes, what are those factors? While the Forest
unacceptable conditions outside the		/)	Service does not control Prosser Reservoir water
control of the manager?			management, it could collaborate with the
Yes _X_ No			Bureau of Reclamation to address the issues
(Revised 1998) (7/2012& 5/16)			noted here by constructing headcut revetments
			or Zuni bowls that would constrain head ward
			migration of incision.

Lentic riparian-wetland areas are functioning properly when adequate vegetation, landform, or debris is present to:

- dissipate energies associated with wind action, wave action, and overland flow from adjacent sites, thereby reducing erosion and improving water quality;
- filter sediment and aid floodplain development; improve flood-water retention and ground-water recharge;
- develop root masses that stabilize islands and shoreline features against cutting action; restrict water percolation;
- develop diverse ponding characteristics to provide the habitat and water depth, duration, and temperature necessary for fish production, waterbird breeding, and other uses; and
- support greater biodiversity.

PFC Assessment Form (Lotic) Name of Riparian-Wetland Area:_Alder Creek

maintenance.

Date:	8/6/201	9	Segment/Reach ID: Along south side of meadow east of the Donner Party Picnic Area					
			Sherman Swa Comparison	anson with review Team	by Meadow	GPS Start reach 39 22' 28.6" N 120 10'37.3" W		
			reaks Meado Comparison	w was selected for	r Meadow	GPS End reach		
Mgm	t./Admi	n Unit 🛛	Fruckee Distr	ict	Assessment Meth	nod Field Assessment		
			nonitoring dat tial and ratior					
thund Strear evider and is down farthe establ and gu Plant surviv now a domin above	erstorm n Type nced by now go stream o st dowr ishmen ravel be commu ving and acting as nating fl e those b terrace	s (s) _ Alo riparian of beave of beave astream t of ripa edded R nities _' l has rec s a ripar loodplai oeaver d	der Creek hist n meadow soi ough channel er dams and s in state 4 may rian stabilizer osgen E4. Tall clumped cently been ki ian stabilizer in meadow ar lams that have	torically supported ils and highly sinu evolution (now at tates 1-2 at or ups y not recover as th rs. Elsewhere the willows, and alde illed by beaver dat along the incised eas that are still ac	d an associated flo tous pattern and lo t states 4-5 (see pa tream of beaver da te fluctuation of Pr potential is probab ers, provide an over m flooding in othe active channel wit ccessible above a h ater onto the flood	with occasional summer odplain riparian meadow as w gradient of <2%. It has incised ge 36 in Dickard et al. 2015) ams near the GPS point Areas rosser Reservoir levels prohibits ly a sinuous narrow low gradient rstory. Lodge pole pine is locally r areas. Small fruited bull rush is h robust stabilizing sedges neadcut flooded by beaver dams or plain surface that is at the elevation		
Yes	No	N/A			HYDROLOG	Y		
	No		dams is deepl	y incised. However	stream adjacent to u	-3 years). Notes: Stream below beaver pper beaver dams is actively flooding the e are new floodplains forming.		
	No 2) Beaver dams are stable. Notes: No recent to the				recent beaver activit nearby. The dams we	y indicators). Many beaver dams did not ere close to willows, but willows were not		

Yes

No

No

headcuts are moving up various channels into the meadow.

3) Width/depth ratio, sinuosity, and gradient are in balance with the landscape setting (i.e., landform,

4) Riparian-wetland area is expanding or has achieved potential extent. Notes: Riparian area has

expanded by flooding and killing lodge pole pine trees near beaver ponds that are flooding onto the meadow surface. However this is offset by riparian area dehydration adjacent to the incised parts of the stream. Contraction is more of an issue closer to Prosser reservoir where

geology, and bioclimatic region). Notes: Incised channel is in state 4-5 below beaver dams.

Yes	No	N/A	VEGETATION
Yes			6) There is adequate diversity of stabilizing riparian vegetation for recovery/maintenance. Notes: (List plant species and note their abundance and location on the NV Riparian Plant Checklist) Tall clumped willows, alders, small fruited bull rush with robust stabilizing sedges (See plant lists collected by Dave Weixelman or others for other protocols).
Yes			7) There are adequate age class(es) of stabilizing riparian vegetation for recovery/maintenance Notes: Various age classes were observed.
Yes	No		8) Species present indicate maintenance (or recovery) of riparian soil moisture characteristics. Notes: Yes where the beaver dams are flooding the meadow and on the new floodplains within the incision. Now below the beaver dams on the terrace that is dehydrating due to drainage toward the incision.
Yes			9) Stabilizing plant communities capable of withstanding moderately high streamflow events are present along the streambank. Notes: Tall clumped willows, and alders, provide an overstory. Small fruited bull rush is now acting as a riparian stabilizer along the incised active channel with robust stabilizing sedges dominating floodplain meadow areas that are still accessible above a headcut flooded by beaver dams or above those beaver dams that have elevated pond water onto the floodplain surface that is at the elevation of the terrace next to the downstream incised channel.
Yes			10) Riparian plants exhibit high vigor. Notes: No issues were observed
Yes	No		11) Adequate amount of stabilizing riparian vegetative is present to protect banks and dissipate energy during moderately high flows. Notes: Yes above beaver dams or along vegetated new floodplains above or closer to the beaver dams. No closer to the lake where fluctuation of water levels is prohibiting formation of riparian stabilizer plant communities.
Yes			12) Plant communities are an adequate source of woody material for maintenance/recovery. Notes: Areas where lodge pole pine have been killed by beaver pond flooding are enabling growth of willows and alters in hydrated pond fringes.

Yes	No	N/A	GEOMORPHOLOGY
Yes			13) Floodplain and channel characteristics (i.e., rocks, woody material, vegetation, floodplain size, overflow channels) are adequate to dissipate energy. Notes: Beaver dam caused floodplain access moderates flood flows and below beaver dams bank erosion is part of the healing process.
Yes			14) Point bars are revegetating with stabilizing riparian plants. Notes: These were observed above the influence zone of Prosser Reservoir water level fluctuation.
Yes	No		15) Streambanks are laterally stable. Notes: Yes above beaver dams where robust rhizomatous sedges provide stability and in areas below the dams where willows and alders with small fruited bulrush provide stability. No close to the lake where water level fuuctuation prohibits formation of streambank stabilizing plant communities.
	No		16) Stream system is vertically stable [not incising]. Notes: Stream incision due to unstable beaver dams would dramatically dehydrate the currently flooded meadow floodplain that would become a terrace.

SUMMARY DETERMINATION	
Functional Rating Proper Functioning Condition	s es nel conditions nent discharge ws _Reservoir water level stence of beavers are not Forest Service enting achievement of portance of downstream ream dependent meadow, s should be installed where re incising close to their rosser Lake or the incised beavers have left or been

(Revised 6/2015) (See Dickard et al. (2015) for reach information form & 6-page version with more room for notes)

A lotic riparian area is considered to be in PFC or "functioning properly when adequate vegetation, landform, or large woody debris is present to:

- dissipate stream energy associated with high waterflow, thereby reducing erosion & improving water quality;
- capture sediment and aid floodplain development;
- improve floodwater retention and ground-water recharge;
- develop root masses that stabilize streambanks against erosion;
- maintain channel characteristics.

Rooted Frequency

		Ecological	Wetland	
Code	Species	Status	Status	Frequency
JUBA	Juncus balticus	С	OBL	41
STOC2	Stipa occidentalis	С	UPL	17
ARTR2	Artemisia tridentata			10
MURI	Muhlenbergia richardsonis	С	FAC	4
POPR	Poa pratensis	I	FAC	59
CISC2	Cirsium scariosum	I	FAC	3
PODO4	Polygonum douglasii	R	FACU	1
GADI2	Gayophytum diffusum	R		1
MIGR	Microsteris gracilis	R		2
AGGL	Agoseris glauca	R	FAC	1
ASTER	Asteraceae			5
			Total hits	144

Compe	43%		
Intermediate/Increasers:			
Ruderals/Invaders:			
*Percentages do not add to 100% due to presence of			
one unidentified species, and one without an assigned			
ecological status rating.			
Ratliff Ecological Status	Rating:	63	
(Ratliff 1985 p. 46) middle of "good" range			
Ground Cover			
Bare Soil 0.42%			
Rodent Bare Soil 0.42%			
Rock			
	96.25%		
Live Basal Vegetation 2.03			
Gravel 0.429			

Soil data

Texture at 25 cm: sandy clay loam Depth to mottles: 50 cm Depth to saturation: 71 cm

Depth of "many" fine roots (1 per cm2, <2mm			
diameter)			
T1	Т2	Т3	
10 cm	9 cm	9cm	

Presen	ce of animal d	ung		
T1	Т2	Т3		
	0	0	0	